Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances—Results from Analytical Stoichiometric Models
نویسنده
چکیده
Mathematical models involving explicit representations of microbial processes have been developed to infer microbial community properties from laboratory and field measurements. While this approach has been used to estimate the kinetic constants related to microbial activity, it has not been fully exploited for inference of stoichiometric traits, such as carbon-use efficiency (CUE). Here, a hierarchy of analytically-solvable mass-balance models of litter carbon (C) and nitrogen (N) dynamics is developed, to infer decomposer CUE from measured C and N contents during litter decomposition. The models are solved in the phase space-expressing litter remaining N as a function of remaining C-rather than in time, thus focusing on the stoichiometric relations during decomposition rather than the kinetics of degradation. This approach leads to explicit formulas that depend on CUE and other microbial properties, which can then be treated as model parameters and retrieved via nonlinear regression. CUE is either assumed time-invariant or as a function of the fraction of remaining litter C as a substitute for time. In all models, CUE tends to increase with increasing litter N availability across a range of litter types. When temporal trends in CUE are considered, CUE increases during decomposition of N-poor litter cohorts, in which decomposers are initially N-limited, but decreases in N-rich litter possibly due to C-limitation. These patterns of flexible CUE that partly compensate stoichiometric imbalances are robust to moderate shifts in decomposer C:N ratio and hold across wide climatic gradients.
منابع مشابه
Microbial community dynamics alleviate stoichiometric constraints during litter decay
Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiome...
متن کاملMicrobial nitrogen limitation increases decomposition.
With anthropogenic nutrient inputs to ecosystems increasing globally, there are long-standing, fundamental questions about the role of nutrients in the decomposition of organic matter. We tested the effects of exogenous nitrogen and phosphorus inputs on litter decomposition across a broad suite of litter and soil types. In one experiment, C mineralization was compared across a wide array of pla...
متن کاملThe global stoichiometry of litter nitrogen mineralization.
Plant residue decomposition and the nutrient release to the soil play a major role in global carbon and nutrient cycling. Although decomposition rates vary strongly with climate, nitrogen immobilization into litter and its release in mineral forms are mainly controlled by the initial chemical composition of the residues. We used a data set of approximately 2800 observations to show that these g...
متن کاملContrasting Predictors of Fern versus Angiosperm Decomposition in a Common Garden
We evaluated differences in the rates and correlates of decomposition among 32 fern and angiosperm litter types collected in Hawai’i. Leptosporangiate ferns were separated into groups based on phylogeny: ‘polypod’ ferns, a monophyletic clade of ferns that diversified in the Cretaceous, and all other (‘non-polypod’) ferns that diversified earlier. We measured initial litter chemistry (nutrients ...
متن کاملPhytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy.
Litter decomposition provides nutrients that sustain ecosystem productivity, but litter may also hamper root proliferation. The objectives of this work were to assess the inhibitory effect of litter decomposition on seedling growth and root proliferation; to study the role of nutrient immobilization and phytotoxicity; and to characterize decomposing litter by (13)C NMR spectroscopy. A litter-ba...
متن کامل